Ladies DX300 Drysuit Special Offer

Its Halloween!

OK, so here is something for the ladies.

We have 10 Ladies DX300 suits in the shop for sale.

The normal retail price for these suits is £1025 but we are running a special while stocks last, reducing the price to £650!

Yep, that’s right, you can have a Hollis DX300 drysuit (not including rock boots) for just £650

The sizes we have available are (while stocks last):

Small with Small Neoprene Sock – Auto dump
Medium with medium Neoprene Sock – Auto dump
Medium Large with medium Neoprene Sock – Auto Dump
Medium Large with medium Neoprene Sock – Cuff Dump
Large with medium Neoprene Sock – Auto Dump
Large with medium Neoprene Sock – Auto Dump
Large with medium Neoprene Sock – Cuff Dump
Extra Large with medium Neoprene Sock – Auto Dump
Extra Large with medium Neoprene Sock – Auto Dump
Extra Large with medium Neoprene Sock – Cuff Dump

And if that is not good enough, you will also get a free bottle of suit lube!

Now that’s a scarily good deal!

First come, first served so get your skates on before they vanish into thin air!

Halloween Is Here!

We love halloween here at DiveStyle but the only thing that is scary is the discounts we are offering until the 31st October 2014.

15%? That is just scary!

15%? That is just scary!

This offer is only available in store and cannot be used in conjunction with any other offer.

 

Hollis Drysuit Trade In Offer

DiveStyle Exclusive!!!!!

We will be kick starting the Hollis BTR-500 Trade-In promotion from the today!

The official start date is the 15th October but as AUP Diamond Dealers we are getting the offer launched a full two weeks early!

The promotion will run until the 30th November.

So how does it work? Easy!

Trade in a complete diving drysuit and you can purchase the new BTR-500 during the promotional period for £699, that is £200 of the official release price of £899!

As a certified Oceanic / Hollis drysuit fitting centre, we will take all of your measurements and find the best fit for you from the Hollis BTR-500 size range.

Christmas is not that far away so grab that old drysuit and treat yourself to a brand new sexy Hollis BTR-500 drysuit and save £200.

Dress for success!

Dress for success!

Regulator Service: A Lot More Than Meets the Eye

This is a little bit of a long post but it is worth reading on. We are often asked, quizzed  accused and even sometimes accused of ‘making up what we do’.

Regulator servicing is something very important for every diver, after all it is your life support system.

You bring your regulator into DiveStyle for its annual service and pass it over the counter to the one of our dive centre staff, we hand you a work ticket in exchange. A week or so later you return and wer hand the regulators back to you — a bit cleaner and with a little plastic bag full of miscellaneous O-rings and odd-looking metal parts. Otherwise, the regulator looks pretty much the same as when you brought it in for service.

It might cross your mind to wonder what the repair technician actually did to your regulator. The sales slip probably says simply, “regulator service.” Chances are the bottom line suggests that considerable work has taken place, but you’re really not sure what. Should you have the opportunity to ask the store’s equipment repair specialist what he or she did, the answer might be something like, “We replaced the O-rings and the filter, checked the internal parts for wear and corrosion, inspected the hoses and cleaned, adjusted and tested it.” Still somewhat mystified, you depart.

Perhaps dive industry professionals have created the erroneous impression that annual regulator service is no big deal, by commonly referring to it as a “tuneup.” Done correctly, it’s more like a complete overhaul. If we followed the example of the automobile industry and listed each part replaced and every task performed during a regulator overhaul, we’d need a mighty long work order.

So what is involved in routine regulator service? Let’s go through the process from beginning to end. When we’re finished, you still won’t be able to service your own regulator, but you’ll have a much better appreciation for the training and skill of the professional repair technician who knows how to take the puzzle apart and put it back together again in perfect working order.

 

Regulator Basics

You’ve probably heard the terms balanced and unbalanced, piston and diaphragm, pilot and down- stream, applied to regulator designs. Regardless of which type you own, an overhaul involves similar steps, although on some different parts. A basic overview of how a regulator works will help you understand what a repair technician does during an annual service.

Modern scuba regulators are all two stage. The first stage is the part of the regulator that mounts on the scuba tank. It takes breathing gas from the cylinder and reduces it from a pressure of as much as 3,500 pounds per square inch (psi) when full, to a pressure of somewhere between 125 and 160 psi, depending on the regulator’s design. This is called the intermediate pressure, and it flows through the low-pressure hoses to both second stages — primary and octopus — and the inflator hose(s).

The second stage of a regulator is the part that your mouthpiece is attached to. This compact capsule reduces intermediate-pressure air to ambient pressure. That is, it reduces the pressure of the air you breathe to match the pressure of the surrounding water (e.g., 14.7 psi at the surface, 58.8 psi at four atmospheres, about 100 feet [30m]). It is because the second stage delivers air at ambient pressure that you are able to inhale comfortably through the regulator.

The terms balanced and unbalanced refer to how the first stage handles the decrease in incoming pressure as the gas in the scuba cylinder is depleted. With older, unbalanced regulators, it became harder to breathe as the tank pressure declined to around 700 psi or less. Most of today’s modern first stages are balanced, which refers to internal design features that hold intermediate pressure — and therefore breathing resistance — constant, regardless of tank pressure. Balanced regulators are more complex to service than unbalanced models.

First-stage regulators are either piston or diaphragm design. Although the mechanisms are different, their function is the same. As the diver inhales, air pressure within a chamber in the first stage decreases, causing either a metal piston or a flexible diaphragm to move. This, in turn, causes a valve to move away from its seating surface (i.e., open), allowing breathing gas to flow from the scuba cylinder into another chamber in the first stage. As pressures within the first stage equalize, the valve closes.

Piston regulators have fewer moving parts, making some models easier to service. However, internal parts in many piston models contact the water, increasing the potential for damage due to corrosion and salt crystallization.

Second-stage regulator designs are either downstream or pilot. Downstream-valve second stages are the familiar round version, with a large internal diaphragm that pushes on a lever when you inhale. The lever opens the valve from the low-pressure hose, permitting air to flow until ambient pressure is reached.

Pilot-valve second stages are elongated in appearance. They use a second valve and chamber that assist in opening the main valve from the low-pressure hose. With more moving parts, the pilot style is more complex to service.

This overview of how a regulator functions is somewhat simplistic, but it should allow you to appreciate that a number of parts are moving constantly in rapid succession and are therefore subject to continuous wear. Even if you don’t use your regulator much during a particular year, O-rings may deteriorate, so service is still recommended. Some regulator manufacturers even require annual professional maintenance to maintain the warranty.

If your annual diving is limited to a short season or only one big trip a year, equipment repair technician Briton Smith at Scuba Set Adventure Center in Washington, advises that you have your regulator serviced before you store it, “Otherwise, salt can continue to damage it while you are taking time off from diving.”

 

Servicing the First Stage

Before beginning to disassemble the first stage, the repair technician determines whether it is functioning properly. To do this he tests the intermediate pressure by hooking up a low-pressure hose to a pressure analyzer. In addition to checking that the pressure level is within the range specified by the manufacturer for this particular model, he checks for fluctuations in pressure, which may indicate internal problems. The test serves as a benchmark for the technician as to the need for replacement of particular internal parts.

A meticulous technician draws a diagram or otherwise labels each hose so he is certain to replace it in the same port it came from. He then removes the hoses from the first stage, replacing them with temporary plugs so he can use compressed air to help remove certain parts without damaging them. He removes the yoke screw and the yoke, leaving just the body of the first stage.

Now it’s time to start removing the internal parts, beginning with the retaining ring and the filter. In this example, the technician is servicing a balanced diaphragm regulator, so he’ll be removing a large retaining nut, two springs, the diaphragm and several pieces associated with the poppet assembly. In addition to a vice and various-size wrenches, specialized tools — often provided by the regulator manufacturer — may be required to separate certain parts. On piston regulators, the parts are different but the process is the same.

Once the first stage is fully disassembled, the repair technician might have up to 30 parts, including O-rings of various sizes, lined up in front of him.

Cleaning is the next step. Metal parts are cleaned with a weak acid solution and may be run through an ultrasound machine to ensure removal of all salt deposits and corrosion. After cleaning, the parts are rinsed thoroughly and dried with compressed air.

Each metal part is inspected for wear and replaced if necessary. Plastic parts are cleaned by hand. O-rings are automatically changed even if they don’t show deterioration; most regulator manufacturers offer kits containing each of the O-rings and other parts commonly replaced at each annual overhaul.

In preparation for reassembly, the repair technician lays out all parts in the order they’ll be reinserted into the regulator. Even though a technician may have overhauled hundreds of similar regulators, a neat and orderly work area helps avoid time-wasting mistakes such as losing a part or missing a piece during reassembly. Chances are, he keeps the manufacturer’s service manual close at hand for reference.

Each part is then replaced in turn. Metal threads and O-rings are lubricated and special tools are used to reinsert the tiny pieces of the poppet assembly. Coaxing O-rings into place requires patience and a steady hand; care must also be taken to place the diaphragm rightside up. The yoke, yoke screw and dust cap are the last parts to be reattached.

Servicing the Second Stage

After the first stage has been reassembled, it is set aside while the technician turns his attention to the hoses and second stages. The hoses are detached and each is inspected for cracks and bulges, including underneath the hose protectors. The O-rings on each end are replaced.

On the primary second stage, the mouthpiece and exhaust tee are first removed and the exhaust valve inspected for its ability to seal. The case is opened and the diaphragm removed, followed by the lever, downstream valve assembly (or the pilot valve assembly) and seat. Again, up to 30 parts might lie in front of the technician when disassembly is complete.

As with the first stage, metal parts are cleaned with a mild acid solution and perhaps subjected to ultrasound treatment, then dried with compressed air. O-rings and the valve seat are replaced, commonly from a manufacturer’s kit. If necessary, the exhaust valve is replaced.

Reassembly of the second stage is fairly straightforward. Before the main valve is returned to the case, the technician sets a rough adjustment that controls inhalation effort. The diaphragm is closely inspected for pinholes, which could cause water to be inhaled. The low-pressure hose is reattached. The same process is then repeated with the octopus or integrated extra second-stage regulator.

 

Final Stages

Once overhaul of the first and second stages is complete, they are reattached. Prior to final inspection of the regulator, however, air pressures must be checked and adjusted. Intermediate pressure emerging from the first stage is adjusted by attaching the regulator to a flow-and-pressure analyzer, or to a scuba tank and intermediate-pressure gauge. First stages differ in the technique used to fine-tune the intermediate pressure.

The second stages are then checked for breathing resistance and free flow under pressure and the valves adjusted accordingly. Some scuba repair facilities are equipped with automatic breathing machines, which break in new valves by setting a groove in the seat. Thus, the diver doesn’t have to worry about changes in the way his regulator functions after the first few dives.

When each of the pressures is adjusted so that the regulator breathes easily but doesn’t free flow, the repair technician completes final reassembly. Old parts are placed in a plastic bag and attached to the regulator so the customer will know that they have indeed been replaced.

The scuba repair technician has one more important job to complete — recording information in the customer’s permanent record, including the work performed and specific pressures set. These records protect the customer’s warranty, providing an ongoing record of service on this particular regulator configuration. For an experienced technician, the entire process takes up to two hours of solid work time, depending on the condition the regulator was in when dropped off.

This description of regulator overhaul has not covered peripherals, such as the gauge console or air-integrated computer, which should also receive required service along with the first and second stages. An extra second stage integrated with the buoyancy compensator (BC) is still part of the regulator system and should be serviced at the same time. If the extra second stage and power inflator are within the same mechanism, an additional level of complexity is added to the service task.

A final word on regulator service: Don’t try this at home. There are virtually no user-serviceable parts in this mechanically sophisticated dive equipment. Care for your regulator by rinsing thoroughly and air-drying after every dive outing and store it properly between trips.

Faithfully keep the annual maintenance schedule by putting your regulator in the hands of a trusted repair technician certified for your brand and model. Treat your scuba regulator right and you’ll be rewarded with years of trouble-free diving.

8 Essential Tips for Regulator Maintenance

If you’ve invested significant money in your dive gear, it’s essential you perform proper maintenance on your regulator. Regular maintainence will prolong the life of your gear and help keep you safe while diving. User maintenance requires that you visually inspect, clean and properly handle all the pieces of your setup using specific steps for both pre- and post-dive care. So, before your next dive trip, follow the pre-dive steps in this guide to make sure your regulator is safe and ready to dive. And at the end of your trip, follow the post-dive steps to keep it in top-notch condition until next time.

Predive 
1. Connect your regulator to a tank when preparing your gear for a dive trip. Take a few breaths from the regulator, a few breaths from the octopus and check the SPG for an accurate reading. 
2. Visually inspect all regulator hoses to ensure there are no cracks, make sure there are no holes or tears in the mouthpieces and check the metal fittings for corrosion. 
3. If you use hose protectors, slide them away from the first stage to check beneath them. At the same time, look for corrosion on the metal first stage. Cracks in the hoses or obvious corrosion on any of the regulator’s components require professional service from a qualified technician. 
4. Next, disconnect the regulator from the tank, replace the dust cover, inhale on each regulator forcefully and hold a vacuum. Each regulator should let in either a very tiny trickle of air or no air at all. 
5. Check each second-stage housing for cracks.

Postdive 
1. When rinsing your regulator, make sure the purge valves on the second stages don’t get depressed and the first stage dust cover is firmly in place. 
2. After dunking the entire octopus, rinse your second stages by running warm water through the regulator mouthpiece and out the exhaust diaphragm. 
3. Rinse the fitting that connects to your low-pressure inflator by working the slip coupling back and forth while holding it under warm running water.

Maldives – One Space Available – It’s going to be a cracker!

We still have one space left on our Maldives trip in October.

The trip is from 11th to the 19th October 2014 at a cost of £2195.00 All Inclusive!

However, the luck person that books this last space will receive a VERY nice suprise!

So, check your diaries, shuffle your appointments and dig into those piggy banks.

This is going to be one amazing trip!

Full details can be found by clicking here

4th Element Proteus with FREE Changing Mat

Are you ready for 5mm Luxury at amazing prices?

Is our beautiful weather tempting you to dig out your kit and dive into the nearest puddle?Although you may feel warm on the surface, water temperatures in and around the UK tend to stay cool all year round and no one likes to feel cold when they are diving. It can spoil your dive and in some cases may even cause you to cut the dive short. Whether you’re diving in the UK or on holiday, in order to stay warm it is really important that your wetsuit fits you properly. To get the best fit it is so important to try it on first and we stock a variety of styles in various sizes. Currently, our favourite suit is the PROTEUS made by Fourth Element – it’s a top end suit, but if it fits you well you will be one of the warmest divers out there in one of the most technically advanced wetsuits on the market. You can choose either 3mm, 5mm or 7mm thickness to suit your diving requirements.

The suit has received numerous reviews from dive magazines raving about its outstanding warmth. With design innovations like the Hydro-lock neck seal system and the plasma seals, the Proteus suit continues to define the upper end of wetsuit performance – why don’t you come and see for yourself why it’s our bestselling wetsuit?

4th Element Proteus 4th Element Proteus

5mm of luxury!

5mm of luxury!

 For a limited time only…

All 4th Element 5mm Proteus wetsuits that are in stock are reduced from £249.99 to £199, plus you will also receive a FREE Fourth Element changing mat worth £14.95,while stocks last.

4th Element Changing Mat4th Element Changing Mat

The changing mat is large enough to be a really useful addition to any diver’s kit with ample room for changing, perfect for keeping your new wetsuit clean when donning and doffing!

We’ll give you the best advice on what size and style of suit to choose in store. Why not pop in and ask us about them? We make a great cup of tea!

 Warm Regards,

The Team at DiveStyle

PS Hurry! When they are gone they are gone!

DiveStyle Diving Ltd | Unit A, Bridge Farm, Reading Road, Arborfield | Berkshire |RG2 9HT |UK

T: +44 (0) 1189 761 729
E: info@divestyle.co.uk
W: www.divestyle.co.uk

Opening Hours:

Monday 10.00 – 18.00
Tuesday 10.00 – 18.00
Wednesday 10.00 – 20.00
Thursday 10.00 – 18.00
Friday 10.00 – 18.00
Saturday 10.00 – 17.00
Sunday CLOSED

Ocean Conservation – Can You Make a Difference?

Ocean conservation is close to every divers heart but making a difference sometimes seems to be incredibly daunting.

Here are 10 possible areas that you, as an individual can consider to try and make a difference.

1. Mind Your Carbon Footprint and Reduce Energy Consumption

Reduce the effects of climate change on the ocean by leaving the car at home when you can and being conscious of your energy use at home and work. A few things you can do to get started today: Switch to compact fluorescent light bulbs, take the stairs, and bundle up or use a fan to avoid oversetting your thermostat.

2. Make Safe, Sustainable Seafood Choices

Global fish populations are rapidly being depleted due to demand, loss of habitat, and unsustainable fishing practices. When shopping or dining out, help reduce the demand for overexploited species by choosing seafood that is both healthful and sustainable.

3. Use Fewer Plastic Products

Plastics that end up as ocean debris contribute to habitat destruction and entangle and kill tens of thousands of marine animals each year. To limit your impact, carry a reusable water bottle, store food in nondisposable containers, bring your own cloth tote or other reusable bag when shopping, and recycle whenever possible.

4. Help Take Care of the Beach

Whether you enjoy diving, surfing, or relaxing on the beach, always clean up after yourself. Explore and appreciate the ocean without interfering with wildlife or removing rocks and coral. Go even further by encouraging others to respect the marine environment or by participating in local beach cleanups.

5. Don’t Purchase Items That Exploit Marine Life

Certain products contribute to the harming of fragile coral reefs and marine populations. Avoid purchasing items such as coral jewelry, tortoiseshell hair accessories (made from hawksbill turtles), and shark products.

6. Be an Ocean-Friendly Pet Owner

Read pet food labels and consider seafood sustainability when choosing a diet for your pet. Never flush cat litter, which can contain pathogens harmful to marine life. Avoid stocking your aquarium with wild-caught saltwater fish, and never release any aquarium fish into the ocean or other bodies of water, a practice that can introduce non-native species harmful to the existing ecosystem.

7. Support Organizations Working to Protect the Ocean

Many institutes and organizations are fighting to protect ocean habitats and marine wildlife. Find a national organization and consider giving financial support or volunteering for hands-on work or advocacy. If you live near the coast, join up with a local branch or group and get involved in projects close to home.

8. Influence Change in Your Community

Research the ocean policies of public officials before you vote or contact your local representatives to let them know you support marine conservation projects. Consider patronizing restaurants and grocery stores that offer only sustainable seafood, and speak up about your concerns if you spot a threatened species on the menu or at the seafood counter.

9. Travel the Ocean Responsibly

Practice responsible boating, kayaking, and other recreational activities on the water. Never throw anything overboard, and be aware of marine life in the waters around you. If you’re set on taking a cruise for your next vacation, do some research to find the most eco-friendly option.

10. Educate Yourself About Oceans and Marine Life

All life on Earth is connected to the ocean and its inhabitants. The more you learn about the issues facing this vital system, the more you’ll want to help ensure its health—then share that knowledge to educate and inspire others.

 

Source – http://ocean.nationalgeographic.com/ocean/take-action/10-things-you-can-do-to-save-the-ocean/